Bifurcations of Fractional-order Diffusionless Lorenz System
نویسندگان
چکیده
Using the predictor-corrector scheme, the fractional-order diffusionless Lorenz system is investigated numerically. The effective chaotic range of the fractional-order diffusionless system for variation of the single control parameter is determined. The route to chaos is by period-doubling bifurcation in this fractional-order system, and some typical bifurcations are observed, such as the flip bifurcation, the tangent bifurcation, an interior crisis bifurcation, and transient chaos. The results show that the fractional-order diffusionless Lorenz system has complex dynamics with interesting characteristics. c © Electronic Journal of Theoretical Physics. All rights reserved.
منابع مشابه
Discretization of a fractional order ratio-dependent functional response predator-prey model, bifurcation and chaos
This paper deals with a ratio-dependent functional response predator-prey model with a fractional order derivative. The ratio-dependent models are very interesting, since they expose neither the paradox of enrichment nor the biological control paradox. We study the local stability of equilibria of the original system and its discretized counterpart. We show that the discretized system, which is...
متن کاملBifurcation analysis and dynamics of a Lorenz –type dynamical system
./files/site1/files/0Abstract1.pdfIn this paper we consider a continues Lorenz – type dynamical system. Dynamical behaviors of this system such as computing equilibrium points, different bifurcation curves and computation of normal form coefficient of each bifurcation point analytically and numerically. In particular we derived sufficient conditions for existence of Hopf and Pitchfork bifurcati...
متن کاملControlling the diffusionless Lorenz equations with periodic parametric perturbation
Diffusionless Lorenz equations (DLE) are a simple one-parameter version of the wellknown Lorenz model, which was obtained in the limit of high Rayleigh and Prandtl numbers, physically corresponding to diffusionless convection. A simple control method is presented to control chaos by using periodic parameter perturbation in DLE. By using the generalized Melnikov method, the parameter conditions ...
متن کاملNon-linear Fractional-Order Chaotic Systems Identification with Approximated Fractional-Order Derivative based on a Hybrid Particle Swarm Optimization-Genetic Algorithm Method
Although many mathematicians have searched on the fractional calculus since many years ago, but its application in engineering, especially in modeling and control, does not have many antecedents. Since there are much freedom in choosing the order of differentiator and integrator in fractional calculus, it is possible to model the physical systems accurately. This paper deals with time-domain id...
متن کاملControl and Synchronization of the Fractional-Order Lorenz Chaotic System via Fractional-Order Derivative
The unstable equilibrium points of the fractional-order Lorenz chaotic system can be controlled via fractional-order derivative, and chaos synchronization for the fractional-order Lorenz chaotic system can be achieved via fractional-order derivative. The control and synchronization technique, based on stability theory of fractional-order systems, is simple and theoretically rigorous. The numeri...
متن کامل